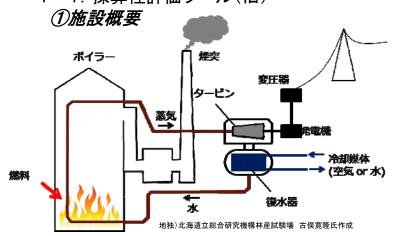
木質バイオマスを用いた 熱電併給事業の普及に向けて

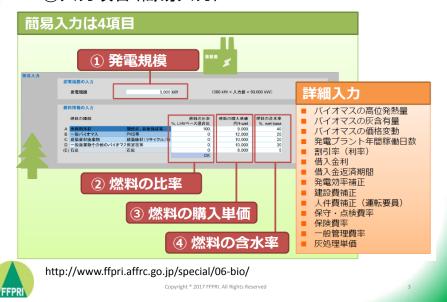

久保山裕史 (研)森林研究·整備機構 森林総合研究所)

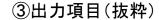
Forestry and Forest Products Research Institute

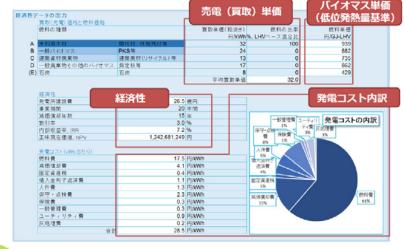
Copyright * 2017 FFPRI. All Rights Reserved

1. CHP評価ツールの開発

1-1. 採算性評価ツール(旧)

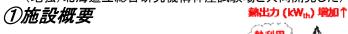


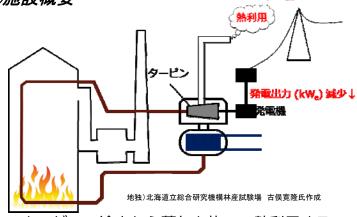

FFPRI


発電のみの場合は石炭火力発電と同じシステム

http://www.ffpri.affrc.go.jp/special/06-bio/

②入力項目(簡易入力)





Copyright * 2017 FFPRI. All Rights Reserved

タービンの途中から蒸気を抜いて熱利用する。 抜いた蒸気の分だけ発電出力は減少する。

Copyright * 2017 FFPRI. All Rights Reserved

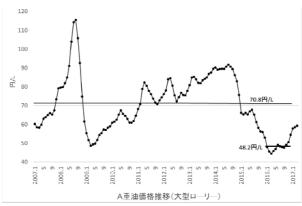
②入力項目

入力項目							
1 5	発電出力	*発電だけ行う場合				1,999	kW
2	抽気条件	*抽気すると発電出力が	下がります	圧力		0.8	MPa
3 ((熱利用)				→蒸気温度	170	℃
4				流量		7.9	t/h
5 ₹	稼働日数	年間稼働日数	設計			330	日/年
6 1	原料条件	使用割合		国産木材	未利用木材チップ	100	%
7		*LHVベース混合比			一般木材チップ	0	%
8		*合計を100%に調整			リサイクル木材チップ	0	%
9				輸入木材等	輸入木質チップ	0	%
10					輸入ペレット	0	%
11				PKS		0	%
12				石炭		0	%
13					合計	100	%

Copyright * 2017 FFPRI. All Rights Reserved

③出力項目(抜粋)

出力項目										
101	ボイラー能力	蒸発量		11.9	t/h					
102		主蒸気温度		369	℃					
103		主蒸気圧力		4.0	MPa					
104	定格出力	発電出力		1,112	kW					
105		熱出力	A:潜熱+顕熱 (全抽気熱量)	6,378	kW					
106			B:潜熱のみ (ドレン熱量を除く)	4,806	kW					
107	各種効率	電気	発電端:A	11.9	%					
108			送電端	10.3	%					
109		熱:B	全抽気熱量基準	68.1	%					
110		総合効率:A+	B (80%以下で抽気条件を設定)	80.0	%					
111	年間使用量	国産木材	未利用木材チップ	26,217	t					
112	*燃焼時質量		一般木材チップ	0	t					
113			リサイクル木材チップ	0	t					
114		輸入木材等	輸入木質チップ	0	t					
115			輸入ペレット	0	t					
116		PKS		0	t					
117		石炭		0	t					
118	エネルギー	電気	発電端	8,810,237	kWh/年					
119	製造量		送電端	7,656,096	kWh/年					
120		熱		50,510,228	kWh/年					


シミュレーションモデル 2-1. 発電施設のタイプ

- モデルA:発電のみ
 - ボイラー蒸発量11.9t/h、抽気無し
 - 建設コスト: 19.2億円
 - 出力:電力1,999kW_e(送電端効率18.5%)
- モデルB:蒸気供給(170℃)---工場等
 - 抽気圧力0.8MPa、7.9t/h
 - 建設コスト: 17.9億円
 - 出力:電力1,112kW_e(送電端効率10.3%)、熱6,265kW_{th}
- モデルC: 温水供給(90°C)---滞在型施設等
 - 抽気圧力0.1MPa、7.9t/h
 - 建設コスト: 18.6億円
 - 出力:電力1,578kW_e(送電端効率14.6%)、熱5,878kW_{th}
- ※燃料チップ価格はすべて9,000円/t-50%w.b.

.

2-2. 熱販売価格シナリオ

出典:資源エネルギー庁(2017)石油製品価格調査、産業界価格(軽油・A重率)

- 10年平均価格70.8円/L→販売価格7.7円/kWh:シナリオ①
- 石油価格48.2円/L→販売価格5.2円/kWh:シナリオ②

Copyright * 2017 FFPRI. All Rights Reserved

3. シミュレーション結果 3-1. 重油価格70.8円/L

モデルA

IRR:赤字

投資回収年:回収不可

モデルB

IRR: 10.1% 投資回収年: 12年

モデルC

IRR:15.6% 投資回収年:9年

Copyright * 2017 FFPRI. All Rights Reserved

10

FFPRI

3-2. 重油価格48.2円/L

モデルA

IRR:赤字

投資回収年: 回収不可

モデルB

IRR:0.1%

投資回収年:回収不可

モデルC

IRR:8.3%

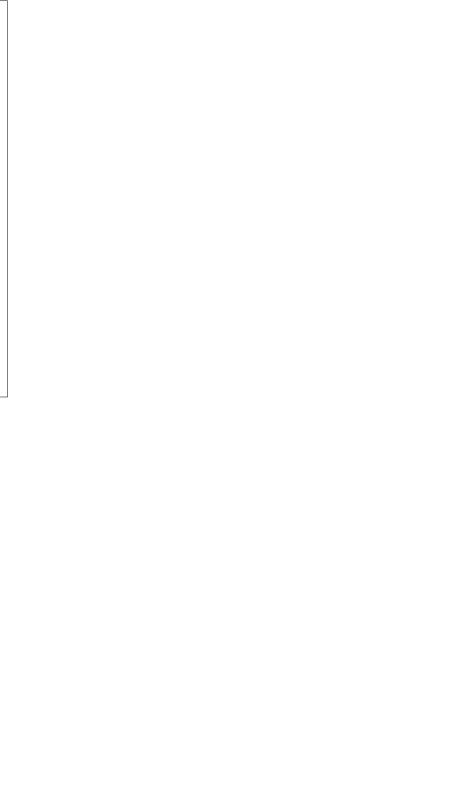
投資回収年:13年

4. まとめ

- 発電出力2000kW未満の蒸気タービン発電の発電単独の 経済性は低い
- 熱電併給は経済性を高めるが、蒸気利用の場合、熱販売価格が低下すると不利になる
- 温水利用は経済性高いが、熱販売先の確保が課題→熱需要の集約に対する助成:熱導管敷設、施設移転
- 小規模発電施設の電力買取り価格引き上げによる熱電併 給の促進効果は小さい

☆政策的な含意

• 熱販売単価が65円/L以上なら中規模CHPに高い経済性 (熱利用全般にあてはまる!)



- 1. 熱FITの導入:48.2円/Lの時には差額を補填、65円/L以上 の時には補填なし
- 2. 炭素税の導入:原油2.8円/L@石油石炭税 →14円/Lに引き上げ

Copyright * 2017 FFPRI. All Rights Reserved

13

