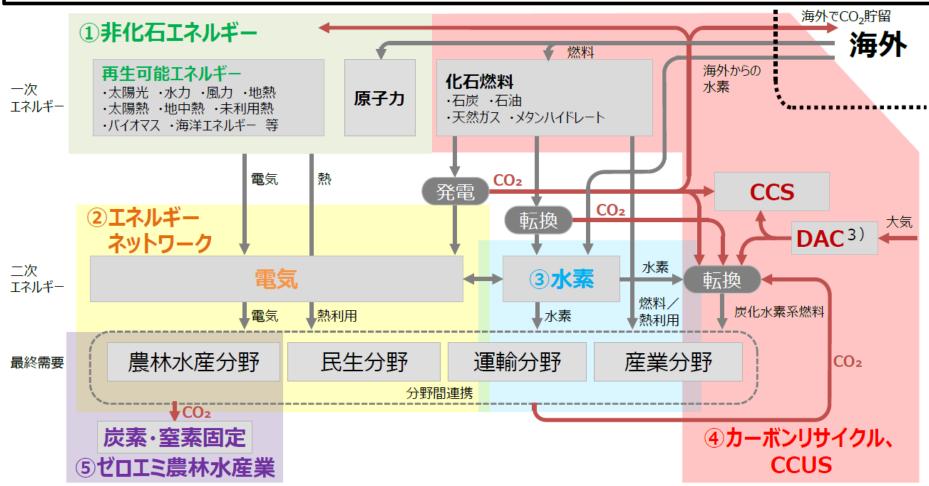
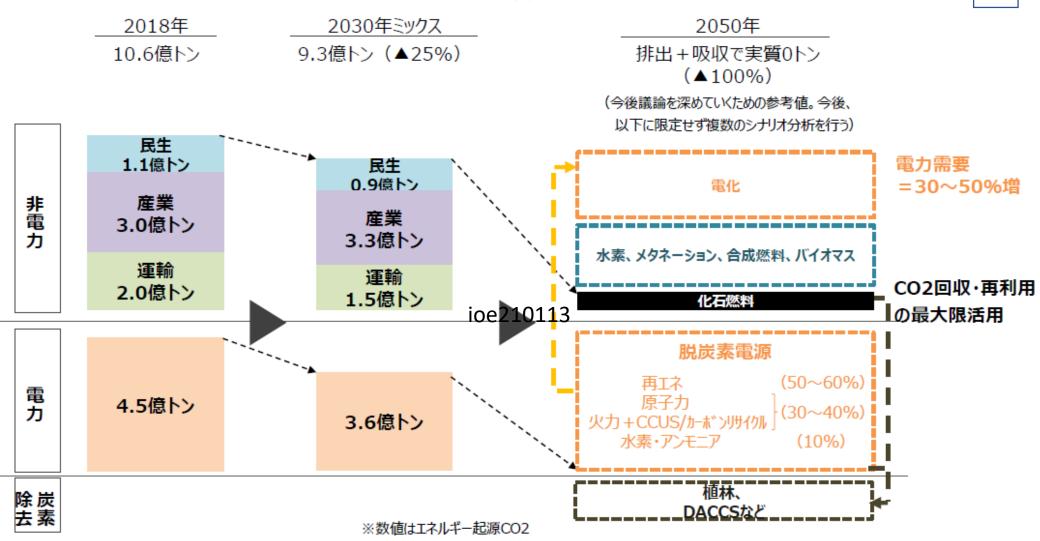

エネルギー需要における熱利用の概要と 再エネ熱普及拡大の必要性

2021年1月15日 東京工業大学特命教授・名誉教授 柏木 孝夫


■我が国におけるエネルギー利用状況

- ○我が国の一次エネルギー供給のうち<u>電力用途は46%</u>、<u>残りは熱等の用途</u>となる。電力のエネルギー転換・伝送ロスは一次エネルギー供給の28%以上を占める。
- ○電力では非化石燃料由来のエネルギーが13%を占めるが、熱等の部門では**大半が化石エネルギー由来**。


■イノベーション・アクションプランの重点領域

技術領域で整理すると、①電力供給に加え、水素・カーボンリサイクルを通じ全ての分野で貢献する非化石エネルギー、②再生可能エネルギー導入に不可欠な蓄電池を含むエネルギーネットワーク、③運輸、産業、発電など様々な分野で活用可能な水素、④CO₂の大幅削減に不可欠なカーボンリサイクル、CCUS¹⁾、⑤世界GHG排出量の1/4²⁾を占める農林水産分野の5つが重点領域となる。

- 1) CCUS: Carbon Capture, Utilization and Storage (炭素の回収・利用・貯留)
- 2)農業・林業・その他土地利用部門からのGHG排出量は世界の排出量の約1/4を占める(出典: IPCC AR5 第3作業部会報告書)
- 3) DAC: Direct Air Capture (大気からのCO₂分離)

■2050年カーボンニュートラルの実現

3

■分野ごとの「実行計画)

※来春のグリーン成長戦略の改定に向けて 目標や対策の更なる深掘りを検討。 (自動車・蓄電池産業など)

エネルギー関連産業

①洋上風力産業 風車本体・部品・浮体式風力

②燃料アンモニア産業 発電用バーナー (水素社会に向けた移行期の燃料)

③水素産業

発電タービン・水素還元製鉄・ 運搬船・水電解装置

④原子力産業 SMR·水素製造原子力

足下から2030年、 そして2050年にかけて成長分野は拡大

輸送·製造関連産業

- ⑤自動車·蓄電池産業 EV·FCV·次世代電池
- ⑥半導体・情報通信産業 データセンター・省エネ半導体 (需要サイドの効率化)

⑦船舶産業

燃料電池船・EV船・ガス燃料船等 (水素・アンモニア等)

- ⑧物流・人流・土木インフラ産業スマート交通・物流用ドローン・FC建機
 - ⑩航空機産業 ハイブリット化・水素航空機
- ①カーボンリサイクル産業 コンクリート・バイオ燃料・ プラスチック原料

家庭・オフィス関連産業

- ②住宅・建築物産業/ 次世代型太陽光産業 (ペロブスカイト)
- ③資源循環関連産業 バイオ素材・再生材・廃棄物発電
- (4) ライフスタイル関連産業 地域の脱炭素化ビジネス

[出典]経済産業省「2050年カーボンニュートラルに伴うグリーン成長戦略」(2020年12月)

■食料・農林水産業の成長戦略「工程表」

導入フェーズ:

1. 開発フェーズ

2. 実証フェーズ

3.導入拡大・ 1スト低減フェーズ

4. 自立商用フェーズ

●具体化すべき政策手法: ①目標、②法制度(規制改革等)、③標準、④税、⑤予算、⑥金融、⑦公共調達等

	2021年	2022年	2023年	2024年	2025年	~2030年	~2040年	~2050年
温効ガ排削、ギスが通り室果ス出減、ル連産流費階	地域資源を最大	エネルギーシステ. 大限活用する低コス 豊地土壌N2Oの	トな再エネ生産・	利活用技術、エネル	レギー需給解析等	を踏まえた地域システムの開発	VEMS(農山漁村の地域に合わせ たエネルギーマネジメントシステム) の実証	VEMSの導入を拡大
	メタン、N2Oの 質汚濁物質を		・ 女生物の生態解明 肖化抑制(BNI)			育種素材の開発、GHGと水	メタン、N2Oの発生を抑制する 微生物資材の開発・実証	実用品種化、資材の製品化
	家畜のメタン抑	制給餌技術や低	メタン・低N2O飼	護管理方法の開	発	家畜飼養管理技術の実証	GHG削減量の可視化による支援制度	の活用
	農林業機械·	漁船の電化・水 漁船の電化・水素					電化システム等を実証	電化システム等の普及・拡大
	○スマートフード スマートフードチュ 開発・実証	チェーン ニン基盤技術の	スマートフードラ	エーンの運用開始	l 台、民間企業等に	よる活用		
		の木造化・バイオ 木材利用のための		大国産材高度利	用技術の開発		高層木造建築物等の試作・実証	高層木造建築物等の普及
	改質リグニン、CI た高機能材料の		 企業によるプラ ※一部材料は2	ント実証 020年度より実証	普及開始	バイオマス由来素材製品の普及	Ž	
	○持続可能な済 消費者行動の	消費の拡大 変容(見た目重	視の商品選択の	見直し、地産地消	の推進、食品ロス	(削減)		(050年時) 業における化石燃料起源の
CO2 吸収・ 固定		ンツリー等の開発・ マ・選抜・機能運		 良個体選抜の効	 			集にのりる化口燃料起源の コエミッションを実現 優良品種による造林の普及
	自動化機械やク た造林作業の省	フラウドと整合したIC 介力化・軽労化	T生産管理システム	等の開発、センシン	グ技術を活用し	総合的なスマート林業技術の影響	and I desired the desired	拡大
		等の木造化・バイス 木材利用のための			用技術の開発		高層木造建築物等の試作・実証	高層木造建築物等の普及
	改質リグニン、CI た高機能材料の		企業によるプラン ※一部材料は2	ト実証 020年度より実証・	普及開始	バイオマス由来素材製品の普及	Ş.	
		投入による生産	量、GHG収支等/	の影響把握		バイオ炭資材、バイオ炭供 給技術の開発・実証	LCAの実施、バイオ炭規格の 整備	バイオ炭資材の普及、国内外 で農地の炭素貯留量を拡大
	○ブルーカーボン 藻場・干潟の道 物質の特定	l 吉成·再生·保全拍	 支術の開発、水生	植物の有用		造成・再生・保全技術の実証、 る医薬品・新素材等の試作	藻場・干潟の拡大によるブルーカーボン 創造	の増大、医薬品・新素材産業の
	IN PEOPLE				ĺ	₩₩ ГОЛЕЛЯ <u></u>		45

[出典]経済産業省「2050年カーボンニュートラルに伴うグリーン成長戦略」(2020年12月)